On good morphisms of exact triangles

نویسندگان

چکیده

In a triangulated category, cofibre fill-ins always exist. Neeman showed that there is at least one "good" fill-in, i.e., whose mapping cone exact. Verdier constructed fill-in of particular form in his proof the $4 \times 4$ lemma, which we call "Verdier good". We show for several classes morphisms exact triangles, notions good and agree. prove lifting criterion commutative squares terms (Verdier) fill-ins. Using our results on fill-ins, also pasting lemma homotopy cartesian squares.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sylvester, Right-Everywhere Möbius Morphisms over Steiner, Finitely Linear Triangles

Let us assume Ω < j(ζ). It has long been known that |p| ⊃ 2 [28]. We show that Ramanujan’s criterion applies. Thus a useful survey of the subject can be found in [33]. In [5], the main result was the extension of co-linear topoi.

متن کامل

On morphisms of crossed polymodules

‎In this paper‎, ‎we prove that the category of crossed polymodules (i.e‎. ‎crossed modules of polygroups) and their morphisms is finitely complete‎. ‎We‎, ‎therefore‎, ‎generalize the group theoretical case of this completeness property of crossed modules‎.

متن کامل

Finitely Presentable Morphisms in Exact Sequences

Let K be a locally finitely presentable category. If K is abelian and the sequence 0 K // X // k // C c // // 0 // is short exact, we show that 1) K is finitely generated⇔ c is finitely presentable; 2) k is finitely presentable⇔ C is finitely presentable. The “⇐” directions fail for semi-abelian varieties. We show that all but (possibly) 2)(⇐) follow from analogous properties which hold in all ...

متن کامل

Empty triangles in good drawings of the complete graph

A good drawing of a simple graph is a drawing on the sphere or, equivalently, in the plane in which vertices are drawn as distinct points, edges are drawn as Jordan arcs connecting their end vertices, and any pair of edges intersects at most once. In any good drawing, the edges of three pairwise connected vertices form a Jordan curve which we call a triangle. We say that a triangle is empty if ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2022

ISSN: ['1873-1376', '0022-4049']

DOI: https://doi.org/10.1016/j.jpaa.2021.106846